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We propose a linear ballistic accumulator (LBA) model of decision making and reaction time. 

The LBA is simpler than other models of choice response time, with independent accumulators 

that race towards a common response threshold. Activity in the accumulators increases in a 

linear and deterministic manner. The simplicity of the model allows complete analytic solutions 

for choices between any number of alternatives. These solutions (and freely-available computer 

code) make the model easy to apply to both binary and multiple choice situations. Using data 

from five previously published experiments, we demonstrate that the LBA model successfully 

accommodates empirical phenomena from binary and multiple choice tasks that have proven 

difficult for other theoretical accounts. Our results are encouraging in a field beset by the tradeoff 

between complexity and completeness. 
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The psychological processes that govern decision making have been the focus of detailed 

study for over half a century. The choices under study are usually quite simple: for example, a 

perceptual decision about brightness; a choice about one’s memory for a probe stimulus; or even 

a simple judgment of the legality of word vs. non-word letter strings. Occasionally, choices 

between more than two alternatives are considered (e.g., Busemeyer & Townsend, 1992, 1993; 

Lacouture & Marley, 1991, 1995, 2004; Usher, Olami, & McClelland, 2002). Theories of choice 

are tested on their ability to accommodate empirical patterns of choice probability and latency 

(response time, RT, although some models have also considered confidence: Vickers & Lee, 

1998, 2000). Even when we restrict our focus to binary choices between simple alternatives in a 

well-controlled environment, the richness of empirical observations is overwhelming. 

Complicated effects are observed on the shape of RT distributions, the relative speed of correct 

and incorrect responses, and the interaction of all these with error rates. This richness has 

resulted in models of choice RT becoming increasingly complicated over the past 50 years 

(amongst others, see: Laming, 1968; Link & Heath, 1975; McClelland, 1979; McMillen & 

Holmes, 2006; Ratcliff, 1978, 1988; Stone, 1960; Usher & McClelland, 2001; Usher et al.; Van 

Zandt, Colonius & Proctor, 2000; for reviews see Luce, 1986, Ratcliff & Smith, 2004, and 

Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). 

We hope to advance this research effort with a new theory of choice RT – the linear 

ballistic accumulator (LBA). The LBA is simpler than the leading models in the field, and yet it 

accommodates all the important empirical phenomena. The LBA also comes with detailed but 

simple analytic solutions, making it easy to apply. The model’s success in accounting for 

empirical phenomena is surprising, given it shares essential properties with older models that 

have proven inadequate. The LBA uses linear, independent response accumulators, as in 
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Vickers’ models (1970, 1978, 1979; Smith & Vickers, 1988, 1989) and some others (e.g., 

Audley & Pike, 1965; Laberge, 1962; Townsend & Ashby, 1983; Van Zandt et al., 2000). This 

arrangement has proven inadequate for modeling very fast errors that are sometimes observed 

(e.g., Ratcliff & Smith, 2004), as well as the non-normality of RT distributions in long-RT tasks. 

The LBA also uses linear deterministic accumulation, similar to the models of Reddi and 

Carpenter (2000), Grice (1972) and Reeves, Santhi and DeCaro (2005); and yet each of these 

models also provides an inadequate account of incorrect responses. 

The LBA is a greatly simplified instance of the dominant theoretical framework for models 

of choice RT for the past 50 years: sequential sampling. Beginning with Stone (1960), and 

continuing through to Ratcliff and Smith (2004), theoretical accounts for the variability in 

responses and RTs have assumed that a decision is made by the accumulation “evidence” that 

varies randomly from moment to moment. A canonical example is illustrated in the left panel of 

Figure 1. Suppose a choice is to be made between two competing alternatives – perhaps to 

classify the letter string “SIRF” as either a valid word, or as a non-word. The two possible 

responses (either “word” or “nonword”) are identified with separate evidence accumulators. 

These accumulators gather evidence for each response, increasing their amount of evidence with 

time. When the amount of evidence in either accumulator reaches a response threshold, the 

decision corresponding to that accumulator is produced, and the decision time is the amount of 

time taken to reach the response threshold1. Most importantly, the evidence accumulation 

process is stochastic – there are random moment-to-moment fluctuations in the amount of 

evidence supporting each response alternative. This randomness explains the variability in RTs 

                                                
1 We assume that RT is the sum of decision time plus a constant extra time, representing all the 
processing that does not involve decision making, such as time for perception and response 
production. 
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(e.g., different response times are observed even if an identical stimuli is repeated) and 

variability in the responses made (e.g., incorrect responses are also observed).  

 

 
Figure 1. A schematic illustration of Usher & McClelland’s (2001, left panel) stochastic accumulator 
panel. Brown and Heathcote’s (2005a, centre panel) ballistic accumulator was simplified by omitting 
within-trial stochastic variation. The linear ballistic accumulator (right panel) is simpler still – omitting 
nonlinear passive decay and response competition processes. 

 The model we have described is Usher and McClelland’s (2001) “leaky competing 

accumulator” (also known as the “mutual inhibition” model). As with all successful theories of 

choice RT, the model includes several extra components in addition to the evidence 

accumulation process. There have been four particularly important additions: two extra sources 

of random variability, and two nonlinear processes. The sources of extra random variability 

allow that the initial amounts of evidence in favour of each response (“start points”) and the 

average speed of evidence accumulation for each response (“drift rates”) to fluctuate from trial to 

trial. The nonlinear processes used by Usher and McClelland were passive decay of accumulated 

evidence, and response competition – evidence accumulating in favour of one response decreases 

the evidence for the other response. 

 Brown and Heathcote (2005a) proposed a simplification of Usher and McClelland’s 

(2001) model. In a break from 50 years of stochastic sequential sampling models, our “ballistic 



LBA: LINEAR BALLISTIC ACCUMULATORS     -6- 

accumulator” omitted the within-trial randomness from the evidence accumulation process, as 

shown in the centre panel of Figure 1. We demonstrated that the ballistic accumulator 

accommodated all of the important empirical phenomena, using only the four processes 

described above (two trial-to-trial variabilities, and two nonlinearities) without any variability in 

the evidence accumulation itself. Here, we propose a further simplification: omitting the 

nonlinearities from the ballistic accumulator. This new model, which we call the linear ballistic 

accumulator (LBA), is illustrated in the right panel of Figure 1. Evidence accumulates linearly 

for both responses, without moment-to-moment variability, continuing until the response 

threshold is reached for one response. Evidence accumulation for each response is also 

independent of evidence accumulating for other responses. 

Linear and independent evidence accumulation is a rare assumption amongst models of 

choice RT, which usually include response competition explicitly (as in Usher & McClelland, 

2001) or implicitly (as in single accumulator models, such as Ratcliff’s, 1978, diffusion model), 

or assume passive decay of accumulated evidence (Smith & Ratcliff, 2004). Even with its very 

basic architecture, the LBA model accounts for all the most important empirical phenomena, 

including RT distribution shape, speed-accuracy tradeoffs, and the relative speed of correct vs. 

incorrect responses. The simplicity of the LBA provides an important advantage relative to all 

other models of choice RT: analytic solutions for the predicted distributions and probabilities. 

Similar solutions are available for some other models of choice RT, although these are not 

always easy to use. The unique advantage of the LBA model is that, unlike other choice RT 

models, the analytic solutions extend to choices between any number of response alternatives. In 

the following sections, we describe how the LBA model relates to previous attempts at 

theoretical simplification, and then describe its most important mathematical properties (with 



LBA: LINEAR BALLISTIC ACCUMULATORS     -7- 

details in the appendix). Finally, we show that the LBA provides a good description of data from 

five previously published experiments. 

Simpler Models of RT 

 The increasing complexity of theories for choice RT has inspired several previous 

attempts at simplification, with reduced assumptions about variability and nonlinearity in 

evidence accumulation. We briefly describe five attempts, ending with the ballistic accumulator 

of Brown and Heathcote (2005a). We highlight the strengths and weakness of each model, and 

compare them to our proposed LBA model. 

The most recent attempt at theoretical simplification is the EZ-diffusion model of 

Wagenmakers, van der Maas and Grasman (2007). This model is extremely simple, with just one 

source of variability in evidence accumulation – within-trial randomness – and simple linear 

accumulation (although evidence for one response does count against the other). The EZ-

diffusion model is even simpler than the LBA, but it is incomplete. Wagenmakers et al. proposed 

the EZ-diffusion as a descriptive rather than process model, with the aim of adequately 

describing data as simply as possible. The tradeoff in developing such a simple model was that it 

could not account for some of the empirical phenomena in choice RT, such as the relative speed 

of correct vs. incorrect responses. Since the EZ-diffusion does not purport to be a complete 

model of choice RT, these inadequacies may be overlooked so that the benefits of its simplicity 

and usability may be enjoyed. The LBA model, on the other hand, is proposed as a complete 

model of choice RT – we maintain that the model, while simple, can account for all of the 

important empirical phenomena. A further difference is that the EZ-diffusion model, like all 

random walk and diffusion models, is naturally restricted to binary choices, whereas the LBA 

model extends easily to choices between any number of alternatives. 
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 Three other simplified theories of choice RT have been proposed: Reddi and Carpenter’s 

(2000) LATER; Grice’s (1972) variable criterion model; and Reeves, et al.’s (2005) random-ray 

model. These models share a common structure, based on a standard random walk, but without 

within-trial variability in evidence accumulation process. The left panel of Figure 2 is a 

schematic illustration of a standard random-walk based model, such as Ratcliff’s (1978, 1988, 

2002) diffusion model. In random walk models, the choice under consideration is always binary, 

with the two possible responses represented by two response thresholds (one upper, one lower). 

There is just one evidence accumulation process, and it begins somewhere between these two 

thresholds. As (variable) evidence is accumulated, the process wanders about until it eventually 

reaches one of the two thresholds, triggering a decision. The simplification proposed by Grice, 

the LATER model, and the random-ray model was to omit the variability from the evidence 

accumulation process, as illustrated in the right panel of Figure 2. These models still predict 

response variability because other sources of variability are included (in the drift rates, start 

points, or thresholds). 

 
Figure 2. Schematic illustration of a standard random walk model (left) and the random ray model 
(right) of Reeves et al. (2005). The random ray model is similar to other simplified models, such as 
Grice's (1972), and Reddi and Carpenter’s (2000).  

The similarity between the LBA and the models of Grice (1972), Reddi and Carpenter 

(2000) and Reeves et al. (2005) is striking: compare the right-hand panels of Figures 1 and 2. 
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This begs the question of why our approach should succeed where these models have failed. The 

answer lies in the particular failures of the earlier models to predict incorrect responses. Taking 

the random ray model as a canonical example, one must consider how incorrect responses arise. 

Like almost all diffusion models, the random ray model assumes a normal distribution for the 

speed of evidence accumulation (the “drift rate” or the slope of the arrow in Figure 2). The 

normal distribution means that on some trials the drift rate will be negative, and the arrow will 

point downwards. This results in an incorrect response, when the evidence accumulation process 

reaches the lower threshold. The problem is that the predicted response times for these incorrect 

responses are negatively skewed, which is never observed in data. The negative skew is caused 

by projecting the tail of a normal distribution (i.e., those negative drift rates) onto the lower 

boundary. Grice’s model makes equally problematic predictions about incorrect responses (see, 

e.g., Ratcliff, 2001). The original version of the LATER model is similarly problematic, as it 

fails to address incorrect responses at all. More recent developments of LATER (e.g., Leach & 

Carpenter, 2001) include the possibility of response variability, although these variants still fail 

to account for the detailed patterns found in incorrect response time distributions2. 

The LBA model, on the other hand, makes accurate predictions for both correct and 

incorrect responses. The key difference is that the LBA model assumes separate evidence 

accumulation processes for each response, rather than using a single random walk. Separate 

accumulators allow the properties of the two responses (e.g., RT distributions) to be quite 

similar, as observed in data. The LBA model is a simplification of Brown and Heathcote’s 

                                                
2 Dzhafarov (1993) provides a related analysis. In particular, his Theorem 2.3.2 demonstrates 
that any reasonable family of response time distributions can be produced by an independent 
accumulator model, if one allows arbitrary distributions of drift rates and/or arbitrary nonlinear 
evidence accumulation functions. Dzhafarov’s work aims at a different level to ours, providing a 
re-description of the data rather than positing a falsifiable model. 
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(2005a) ballistic accumulator, which was in turn a simplification of Usher and McClelland’s 

(2001) model. Brown and Heathcote advanced the argument that their ballistic accumulator was 

an improvement over Usher and McClelland’s model using Occam’s Razor – they showed that 

the ballistic accumulator was simpler, but still accommodated the data. Here, we extend this 

argument one step further, and demonstrate that the (even simpler) LBA model accommodates 

all the requisite empirical phenomena. Defining the “simplicity” of accumulator models is not 

easy, but a coarse approximation may be obtained by counting parameters. We note that, to fit 

RT distributions from k experimental conditions (for correct and incorrect responses) the LBA 

model typically requires k+4 parameters, while competing models require at least this many, and 

occasionally more: Brown and Heathcote’s ballistic accumulator requires k+6; Ratcliff’s 

diffusion requires k+5 (or +6 depending on some extra components). 

The LBA model enjoys one final advantage over other models of choice RT, as it has 

simple analytic solutions for choices between any number of different alternatives. The 

importance of such solutions should not be underestimated. One of the reasons for the success of 

Ratcliff’s (1978, 2002, Ratcliff & Smith, 2004) diffusion model was its well-developed analytic 

solutions for binary choices. The LBA model extends this advantage to choices between more 

than two alternatives, opening up new modeling possibilities. 

The Linear Ballistic Accumulator 

The LBA model represents a choice between N alternatives (N=2,3,…) using N different 

evidence accumulators, one for each response. This is illustrated for the binary (N=2) case in 

Figure 3, which shows two evidence accumulators, one for “Response A” and one for “Response 

B”. Each evidence accumulator begins the decision trial with a starting amount of evidence (k) 

that increases at a speed given by the “drift rate” (d). Accumulation continues until a response 
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threshold (b) is reached. The first accumulator to reach the threshold decides the overt response, 

and the time taken to reach the threshold decides the RT (plus some extra constant time for non-

decision processes, t0). Simple geometry dictates that the time taken for an accumulator to reach 

the threshold is (b-k)/d. 

The LBA model explains the observed variability in data using two sources of between-

trial randomness. The starting points for evidence accumulators are random values drawn from a 

uniform distribution on the interval [0,A], and the drift rates are drawn from normal distributions 

with means v1, v2, … , vN for the different response accumulators, and a common standard 

deviation s. All random values are drawn independently for each accumulator, and are 

independent across decision trials. For the rest of this paper, we will refer to a uniform 

distribution on the interval (x,y) as U[x,y] and a normal distribution with mean µ and standard 

deviation σ as N(µ,σ). The functions φ(.|µ,σ) and Φ(.|µ,σ) refer to the normal distribution’s 

density and cumulative density functions, respectively. We will use lower case letters to refer to 

probability density functions (PDFs) and upper case letters for cumulative distribution functions 

(CDFs). 

 
Figure 3. A two-choice version of the LBA. Evidence for Response A is gathered in the left hand 
accumulator, and for Response B in the right hand accumulator. Starting values for the evidence 
accumulation processes (e.g., k) are drawn randomly and independently from identical uniform 
distributions on the interval [0,A]. The drift rate (the speed of evidence accumulation, e.g., d) is drawn 
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independently for each response from normal distributions with standard deviation s. A response is 
triggered when the first accumulator reaches the threshold b. 

Consider for a moment just the i-th accumulator. Since the starting value for the evidence 

accumulator is a random sample from a uniform distribution on [0,A], the amount of evidence 

that needs to be accumulated to reach the threshold b is a sample from the uniform distribution 

U[b-A,b] (we assume b≥A). The drift rate is a random draw from N(vi,s), so the distribution 

function for the time taken for the i-th accumulator to reach threshold is the given by the ratio of 

these two, which has CDF (at time t>0):  
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Most often, we are not interested in the time take for one particular evidence accumulator 

to reach threshold, but rather in the time taken for the first accumulator from all N to reach 

threshold. In particular, we want the defective distribution of response times for the i-th 

accumulator. By a “defective distribution”, we mean a distribution that is not normalised to one, 

but instead to the probability of the response with which it’s associated. Equations 1 and 2 allow 

the direct calculation of the defective PDF for the i-th accumulator by: 

! 

PDFi t( ) = f i t( ) 1" Fj t( )( )
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The associated CDF can be evaluated by numerical integration of Equation 3. The probability of 

making response i is given by the integral over the positive real line of Equation 3, or 

equivalently by the associated CDF evaluated at t→∞. 
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 Equations 1-3 are derived in detail in the appendix. An assumption of our derivations is 

that at least one of the accumulators has a finite and positive (first passage) time to achieve 

threshold. Since drift rates are sampled from normal distributions, there is some probability of a 

negative drift rate, namely 
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the parameters we estimate from data below, undefined response times are never predicted for 

more than 0.5% of trials in any of the five experiments. 

It is conceivable that human subjects give “undefined responses” in at least that many 

cases: for example, Ratcliff and Tuerlinckx (2002) directly estimate a parameter (po) describing 

the proportion of “contaminants” at between 1-5%. Undefined response times could also be 

eliminated altogether by assuming a strictly positive distribution for drift rates, such as the 

lognormal distribution (see, e.g., Heathcote, Hayes, Sutton & Mewhort, submitted). We chose 

the normal distribution for practical reasons, because it is both tractable and conventional. That 

is, the normal distribution allowed us to complete many of the differential and integral calculus 

operations in the appendix, which would have been troublesome with other distributions, and 

almost all other choice RT models have assumed normal distributions for drift rates.  

There are two ways in which one may interpret the idea of “ballistic” accumulation. By 

analogy with Newtonian mechanics, one may imagine the growth of activation in each 

accumulator as a pre-defined process that cannot be stopped or changed once it has begun. We 

do not intend for our model to adhere to this strongest definition, but rather we use the term 

“ballistic” to refer to two critical elements. Firstly, evidence accumulation is non-stochastic, 

which is the key difference between the LBA and most other models of choice RT. Secondly, 
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evidence accumulation is ballistic in the sense that the future trajectory of each evidence 

accumulator is completely determined once its initial conditions are known – corresponding to 

the notion of ballistics in Newtonian mechanics. This second constraint may require relaxation 

under certain unusual experiments, for example when the information content of a stimulus is 

dramatically altered during the course of a decision. Brown and Heathcote (2005b) used stimuli 

that changed from favouring one response to another, partway during a trial (see also Usher & 

McClelland, 2001, and Vickers, 1995). Under these conditions, it is possible that the assumptions 

of the LBA may need to be relaxed so that the drift rate changes when the stimulus category is 

changed. This assumption contrasts with our usual assumption of an unchanging rate of evidence 

accumulation, even for stimuli that include random noise that varies from moment to moment. 

More experimentation with dynamically changing stimuli is required to identify those situations 

in which our simplest assumptions will not hold.  

Predicting Fast and Slow Errors 

The relative speeds of correct and incorrect response times have become important for 

theories of choice RT (see, e.g., Luce, 1986; Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004). 

When choices are easy, and participants are told to respond quickly, incorrect responses are 

faster than correct responses, but when choices are difficult, and accuracy is emphasized, 

incorrect responses are slower than correct responses. As in other complete models of RT, the 

LBA accommodates this pattern via the interplay between start point variability (uniform 

samples from [0,A]) and drift rate variability (normally distributed samples with standard 

deviation s). When response speed is emphasized, the response threshold (b) is fixed at or near 

the top of the start point distribution (A). This means that a very fast response will occur 

whenever a start point is sampled close to the top of its distribution. With such a high starting 
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point there is little integration time taken to reach the threshold, so responses are about equally 

divided between correct and incorrect responses, depending on which response accumulator 

sampled the high start point. Conversely, when start points are sampled from lower in the 

distribution, responses are slower, and integration time is longer. The longer integration time 

allows the correct response (with the higher drift rate) to overtake the incorrect response, so these 

slow responses are mostly correct. All of this means that when response speed is emphasized, 

incorrect responses are mostly due to start point samples from the upper end of the distribution, 

and are relatively fast. 

When instructions stress response accuracy rather than response speed, the response 

threshold is set well above the top of the start point distribution. This makes integration time 

quite long for all decisions, so the effect of variability in start point is integrated out, and errors 

are caused mostly by drift rate variability. The larger mean drift rate for correct responses 

ensures that threshold-crossing times are faster for correct responses than incorrect responses. 

The smaller drift rate for the incorrect response accumulator means it reaches the response 

threshold more slowly, causing incorrect responses to be slower than correct responses. 

Benchmark Tests 

 We test the LBA model against several sets of benchmarks, using data from five 

previously published experiments. We first analyse three lexical decision experiments, which 

illustrate the model’s basic predictions and show that the LBA accounts for response accuracy 

and for the shape and speed of RT distributions for both correct and incorrect choices. We then 

extend the model analyses to a brightness discrimination experiment, using unaveraged 

(individual-participant) data. Those data exhibit a complex interaction of fast and slow errors, 

which has proven challenging for other models of choice RT. We then examine the LBA model’s 
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account of the shape of speed-accuracy tradeoff (SAT) curves. Finally, we extend our analyses to 

multiple choice data, using an absolute identification task with ten alternatives. These data allow 

the LBA’s predictions for RT distributions and response probabilities to be tested in a multiple 

choice paradigm, and using individual participant data. 

 For a choice between two alternatives, the LBA model appears to have six parameters: 

the response threshold (b), the upper end of the start point distribution (A), drift rates for each 

response (v1 and v2), a standard deviation for drift rate samples (s), and the amount of time taken 

for non-decision components of response time (t0). However, as with other accumulator models, 

one parameter must be eliminated as a “scaling parameter”. The scaling property of the model is 

such that, if all parameters (except t0) were doubled, the model’s predictions would be 

unchanged. To remove this redundancy, one parameter must be fixed arbitrarily, but there are 

many ways to do this. For example, Usher and McClelland (2001) chose to fix the sum of the 

drift rates arbitrarily at one (v1+v2=1), and we follow this convention in all our two-choice 

analyses. When considering simultaneous fits to more than one drift rate condition, other ways of 

fixing the scaling problem are possible. For example, rather than assuming that the sum of the 

drift rates is constant, one might assume that the drift rate for the incorrect response is a constant 

value (say, 1), or that the ratio of the drift rates for the correct and incorrect responses is a 

constant value. As with all accumulator models, these assumptions will lead to different 

predictions about error responses, and imply different psychological interpretations of the model. 

Lexical Decision Experiments 

 Lexical decision is the task of classifying letter strings as either valid words (“SURF”) or 

non-words (“SIRF”). Data from lexical decisions exhibit reliable speed-accuracy tradeoffs and 

effects of word type (e.g., Brown & Steyvers, 2005; Ratcliff, Gomez & McKoon, 2004). Ratcliff 
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et al. conducted a series of nine experiments manipulating stimulus features, such as the ease-of-

pronunciation for non-words (e.g., “XJQF” is hard to pronounce, but “SULF” is not) and the 

natural occurrence frequency for words (e.g., “THEN” appears often in written texts, but 

“PANE” does not). They observed reliable changes in response accuracy, and the shapes of RT 

distributions for correct and incorrect responses. We analyse all experiments for which they 

reported complete results for incorrect and correct RT distributions: Experiments 3, 4 and 5. 

Ratcliff et al. modeled the data using their diffusion model, which required k+6 free parameters 

when applied to k different experimental conditions. The LBA accounts for the same data at least 

as well using k+4 parameters (compare our model fits with Tables 5 and 12 from Ratcliff et al.). 

 In their Experiment 3, Ratcliff et al. (2004) used three classes of letter strings: 

pronounceable pseudowords (“CLARP”), high-frequency words (“CHAIR”) and low-frequency 

words (“CINCH”). Figure 4 shows the defective RT distributions from these three conditions, 

using quantile estimates. Each panel of Figure 4 shows five quantile estimates from each of the 

correct response and incorrect response time distributions. The quantile estimates (open diamond 

symbols) give the RT below which 10%, 30%, 50%, 70% and 90% of the data occur. The 

quantile estimates can be interpreted as five points on the defective cumulative distribution 

function for the data. The quantile estimates also carry information on response accuracy because 

we use defective cumulative distributions. This means that the relative heights of the correct and 

incorrect distributions show the proportion of correct vs. incorrect responses. For example, the 

90% quantile for correct responses is graphed at a probability of .84, indicating that 84% of the 

data fall below the corresponding RT (0.865sec). This is the 90% quantile estimate because 90% 

of the correct responses, which are 93% of the data (i.e., 7% of all responses were errors), fall 

below 0.865sec. 
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Figure 4. Participant-average quantile estimates (symbols) from Ratcliff et al.’s (2004) Experiment 3, 
and predicted quantiles from the LBA model (lines). The three panels represent data from the three 
stimulus classes: pseudowords, high-frequency words and low frequency words. In each panel, the 
two lines show .1, .3, .5, .7 and .9 quantile estimates for correct responses (higher lines) and incorrect 
responses (lower lines).  

 The solid lines with small symbols show the predicted quantile estimates from the LBA 

model. The model’s predictions match the data very well; the worst error is a 0.053 sec. over-

prediction for the 90% quantile estimate from incorrect responses to low frequency words. This 

misfit does not overly trouble us because the data in question (the slowest 10% of incorrect 

responses) represent only 0.7% of data from the experiment. 

We fit the model to the data assuming that mean drift rate (v) was different for the three 

conditions, but that all other parameters (t0, A, b, and s) were equal across the three conditions. 

The mean drift rate for the response accumulator corresponding to incorrect responses was 

(arbitrarily) set at one minus that for correct responses. Taking the quantile estimates for correct 

and error RT distributions given in Ratcliff et al.’s (2004) tables, we compared the goodness of 

fit between CDFs predicted by the LBA model and the data using the quantile maximum product 

method of Heathcote, Brown and Mewhort (2002, see also Heathcote & Brown, 2004). We then 

used a standard simplex algorithm to maximize this statistic over the parameters. 
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The free parameter values are reported in Table 1 – note that the estimate of b (the 

decision threshold) is equal to A (the upper limit of the start point distribution) in all three 

experiments. This reflects the faster incorrect than correct responses for these data, which occurs 

when starting point variability is relatively large. There is very good agreement between 

common parameter estimates for the three experiments (e.g., the three drift rate estimates for 

high frequency words, vH, agree to within 4%) supporting the notion that the LBA parameters 

reflect consistent underlying aspects of decision-making. Finally, we note that the problem of 

undetermined response times, due to negative drift rates, is very small: the probability is less 

than 0.4%. 

Table 1. Parameters for the LBA model for fits to Experiments 3, 4 and 5 from Ratcliff et al. (2004). 

 t0 A b s vR vP vH vL vV 
Expt. 3 0.425 380 380 0.428  1.04 1.32 0.916  
Expt. 4 0.392 377 377 0.511 1.34  1.37 1.22  
Expt. 5 0.438 460 460 0.422  1.07 1.36 1.00 0.802 

Note: v indicates mean drift rate for: random letter strings (R); pseudowords (P); high frequency 
words (H); low frequency words (L) and very low frequency words (V). 

 Figures 5 and 6 show data from Ratcliff et al.’s (2004) Experiments 4 and 5, along with 

LBA model fits. The format of the figures is the same as in Figure 4, except for the stimulus 

condition that was contrasted with low- and high-frequency words. Experiment 3 (above) used 

pronounceable pseudowords, while Experiment 4 (in Figure 5) used random letter strings. 

Experiment 5 (in Figure 6) returned to pronounceable pseudowords, and included a new category 

of very low frequency words. In each case, the LBA model fits the data allowing only drift rate 

to change between the stimulus conditions. 
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Figure 5. Quantile estimates (symbols) from Ratcliff et al.’s (2004) Experiment 4, and predicted 
quantiles from the LBA model (lines). The three panels represent data from the three stimulus 
classes: random letter strings, high-frequency words and low frequency words.  

 
Figure 6. Quantile estimates (symbols) from Ratcliff et al.’s (2004) Experiment 5, and predicted 
quantiles from the LBA model (lines). The four panels represent data from the four stimulus classes: 
pronounceable pseudowords, high-frequency words, low frequency words, and very low frequency 
words. 

The LBA model fits the data very well in all three experiments (compare our fits with 

diffusion model fits from Tables 3 and 12 of Ratcliff et al., 2004). In each data set, there were 

several important phenomena that the model captured. Firstly, the incorrect RT quantiles (lower 

line in each plot) were further to the left than the corresponding correct RT quantiles, indicating 

that incorrect responses were faster than correct responses. The LBA model accommodates this 

pattern, predicting “fast errors” by virtue of setting the response threshold at the upper limit of 
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the starting point distribution (b=A), rather than far above it (b>>A). All three experiments also 

showed changes in accuracy across the stimulus conditions, as exemplified by changes in the 

overall heights of the lines across panels in Figure 6. The LBA model fits this pattern via 

changes in the drift rate, with larger drift rates leading to higher accuracy, and hence higher 

defective CDFs for correct responses, and lower defective CDFs for incorrect responses. Finally, 

the LBA model captures the shape of the RT distributions, with a sharp leading edge and long 

right tail (e.g., the CDF flattens out between the .7 and .9 quantile estimates for every 

distribution). In all three experiments, the worst misfit between LBA predictions and data occurs 

for the slowest quantile estimate for incorrect responses. The LBA over-predicts this value by as 

much as 0.09sec (random letter strings in Experiment 4) and under-predicts by just as much (for 

pronounceable pseudowords in Experiment 5). Two things suggest that these misfits are due to 

random sampling variability in the data: they are not systematic, being sometimes over- and 

sometimes under-predictions; and the quantile estimates in question are always the most variable 

in the data set, arising from the slowest 10% of incorrect responses, less than 1% of the data in 

each stimulus condition. 

Speed and Accuracy Emphasis in Brightness Discrimination 

 Ratcliff and Rouder (1998) performed a simple brightness discrimination experiment that 

has since proven seminal in the development of two-choice RT models. They asked three 

participants (JF, KR and NH) to classify patches of pixels as either “bright” or “dark”, about 

8,000 times each. The brightness of the pixel patch was manipulated in 33 levels, from very dark 

(which was almost always classified as “dark”) through to midway (which was classified “dark” 

and “bright” about equally often) to very bright (almost always classified as “bright”). They also 

manipulated the urgency of responding, by changing the relative emphasis placed on accuracy 
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vs. speed in the instructions and feedback given to the participants. When participants were given 

“speed-emphasis” instructions, they were told not to be overly concerned about errors, and 

whenever a response took longer than 0.55sec, the feedback “TOO SLOW” was given. Under 

“accuracy-emphasis”, participants were told not to make mistakes, if they could be avoided, and 

when an error was made to a relatively easy-to-classify stimulus, the feedback “BAD ERROR” 

was given. 

 Ratcliff and Rouder’s (1998) data have proven very testing for models of two-choice RT. 

They display complex interactions of mean RT with response probability and speed- vs. 

accuracy-emphasis. These interactions are impossible for some models of choice RT to 

accommodate, leading some to suggest those models be rejected (e.g., Ratcliff & Smith, 2004). 

Figure 7 displays Ratcliff and Rouder’s data, using a separate panel for each of the three subjects 

(compare with Ratcliff & Rouder’s Figure 4).  

 

Figure 7. Mean RT (symbols) and predicted mean RT from the LBA model (lines) for three subjects 
from Ratcliff and Rouder (1998). The upper and lower lines are for accuracy and speed emphasis 
conditions, respectively. Within each condition, there are 33 separate points – one for each level of 
stimulus brightness. Following Ratcliff and Rouder, we collapsed “bright” and “dark” responses, so 
that the left side of each plot represents correct responses to very easy-to-classify stimuli, and the 
right side of each plot represents (very rare) incorrect responses to the same stimuli. The centre of 
each plot shows data from difficult stimuli, which were nearly equally often classified as “dark” or 
“bright”. Bars indicate +/-1 standard error. 
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 Figure 7 graphs mean RT for each of the 33 stimulus conditions (symbols) separately for 

accuracy emphasis and speed emphasis instructions (upper and lower parts of each plot). For 

each condition, data are separated into “correct” and “incorrect” on the basis of the modal 

response, and mean RT is graphed separately for correct and incorrect responses, against the 

probability of the response type (i.e., a “latency-probability” or LP plot, see Audley & Pike, 

1965, or Ratcliff & Rouder, 1998). An example may make this clearer; consider just the data 

from the very easiest stimulus class (either very dark, or very bright), under speed emphasis 

instructions, for participant JF. These stimuli were presented 44 times in total, and JF classified 

them correctly 40 times, hence the probability of a correct response was 91% and the probability 

of an error was 9%. The mean RT for JF’s correct responses was 0.331sec, and for the incorrect 

responses the mean RT was 0.265sec. These data are represented in Figure 7 as two points, in 

JF’s panel, on the lower line – for speed emphasis data. One point corresponds to correct 

responses and is placed at {x=.91, y=0.331} and the other represents incorrect responses, at 

{x=.09, y=0.265}. All other conditions are similarly represented, so that each stimulus condition 

corresponds to two points on the LP plot: one for correct responses, at x=p and one for incorrect 

responses, at x=1-p. 

 The data show some phenomena that have proven very challenging for models of two-

choice RT. Firstly, there is a very large difference in RT between the speed- and accuracy 

emphasis conditions: mean RT more than doubles in the accuracy condition. This large speed 

difference is accompanied by only a small difference in accuracy between the two conditions, 

with only about 6% between the most accurate condition in speed emphasis vs. accuracy 

emphasis. Even more challenging is the relative speed of correct vs. incorrect responses. Under 

accuracy emphasis, for all stimulus conditions, error responses are slower than correct responses. 
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This is evident when comparing correct responses from any point on the right-hand half of the 

graph (say, x=p) with the corresponding incorrect responses, at x=1-p. However, when 

participants were put under speed emphasis, the situation reversed; mean RT for incorrect 

responses was faster than mean RT for correct responses. This crossover pattern has also been 

observed by others, see Luce (1986) for a summary, and has proven difficult to model. 

 The fits of the LBA model (solid lines in Figure 7) show that it predicts the change from 

slow errors under accuracy emphasis to fast errors under speed emphasis, for all three subjects. 

We constrained LBA parameter estimates following Ratcliff and Rouder’s (1998) diffusion 

model analysis of their data, to keep the results comparable. We allowed a separate drift rate 

estimate for each of the 33 stimulus conditions, but constrained these estimates to be equal across 

speed emphasis and accuracy emphasis conditions3. We kept the non-decision component of RT 

(t0), and the variability in drift rates (s) constant across all conditions. To model the difference 

between speed emphasis and accuracy emphasis instructions, Ratcliff and Rouder allowed 

changes in boundary separation (equivalent to the response threshold, b) and start point 

variability (A). Ratcliff and Rouder constrained another free parameter by assuming that start 

point variability was a constant proportion of boundary separation (i.e., they fixed the ratio b:A) 

resulting in five free parameters for their model, in addition to a drift rate estimate for each 

condition. We modelled the speed-emphasis condition by fixing the response threshold at its 

lowest value (b=A), consistent with our analysis of the lexical decision data above. We estimated 

a separate (larger) response threshold for the accuracy emphasis condition. Like Ratcliff and 

Rouder, we allowed different amounts of start point variability (A) for speed and accuracy 

emphasis conditions, but unlike Ratcliff and Rouder, we did not constrain these to be constant 

                                                
3 We further simplified the fitting by estimating only four drift rate parameters, and interpolating 
the full set of 33 from these four, using spline functions. 
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proportions of the response threshold4. These considerations resulted in the LBA model using 

exactly the same number of parameters as the diffusion model – five free parameters, plus one 

drift rate per stimulus condition. The estimated parameters for the LBA model fits are shown in 

Table 2. Once again, the problem of non-terminating RTs caused by negative drift rate samples 

is negligible. The predicted proportion of non-terminating responses for the three subjects was: 

JF=0.05%, KR=0.04% and NH=0.23%. Once again, we estimated parameter values using the 

QMP method of Heathcote et al. (2002).  

Table 2. Parameters for Ratcliff and Rouder (1998).  

Participant Instructions t0 s A b 
Speed 181 JF 

Accuracy 
.208 .285 

527 673 
Speed 177 KR Accuracy .188 .290 750 900 
Speed 219 NH Accuracy .233 .338 475 572 

 

Response Deadlines and Speed-Accuracy Tradeoff 

 An important aspect of speeded choice is the ability to trade speed for accuracy. We have 

already addressed this in our fits to Ratcliff and Rouder’s (1998) data, where two different speed-

accuracy settings were implemented using feedback and instructions for participants. In response 

deadline paradigms, the speed-accuracy tradeoff is investigated quantitatively, via the speed-

accuracy tradeoff (SAT) function relating the accuracy of decisions to the time taken to make 

them. Previous research (e.g., McElree and Dosher, 1989; Luce, 1986; Ratcliff & Rouder, 2000; 

                                                
4 Some readers may feel that start point variability should be constrained to be a constant 
proportion of the response threshold, as in Ratcliff and Rouder’s (1998) analysis. We assessed 
the fit of the LBA model under that constraint, and found it was marginally poorer (but also one 
parameter simpler – contact the authors for a graph and details). We chose to show the 
unconstrained version, because we could see no a priori reason why start point variability should 
be allowed a different value between the speed and accuracy conditions, but should not be 
allowed a different proportion.  
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Usher & McClelland, 2001) has found that the shape of the SAT curve is approximately shifted-

exponential, so it is important to determine whether the predictions from the LBA match this 

benchmark. To test LBA we first require the distribution (across repeated trials) of activation 

values at any time t>0 for the i-th response accumulator. Given a start point k drawn from U[0,A] 

and a drift rate d drawn from N(vi,s) the activation at time t is k+td, and hence the distribution 

function, Wi, and probability density function, wi, for this quantity are (note that z represents 

activation, and t represents integration time): 
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To make predictions about accuracy in a deadline (signal-to-respond) paradigm, we 

assume the model operates without response thresholds. When a deadline arises and a response is 

required, the model returns whichever response corresponds to the accumulator with the greatest 

activation. The probability that the i-th accumulator has the greatest activation at time t>0 is 

given by combining Equations 4 and 5: 
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 The speed-accuracy tradeoff function is given by Equation 6 and evaluated for whichever 

response (i) is correct. To compare with benchmark results from binary choice paradigms, the 

response probability must be transformed to sensitivity. Assuming unbiased responding, this 

transformation is: 

! 

" d z( ) = 2 # $%1
pi z( )( )   (7) 
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Using Equations 6 and 7, and parameter settings taken from the fits to Ratcliff and 

Rouder’s (1998) data, we calculated predicted SAT functions for three participants, for response 

deadlines from 0-1.2sec, in steps of 20msec (shown by the open circles in Figure 8). The solid 

lines in Figure 8 show the best fitting shifted-exponential functions for each participant’s SAT 

curve. The agreement between the predicted SAT functions from the LBA model and the shifted 

exponential form is very good. There is a difference at the highest performance levels, where the 

LBA model predicts a slower approach to asymptote than does the shifted exponential function, 

but the discrepancy is so small it is imperceptible in the graph. 

 

Figure 8. Predicted SAT functions from the LBA model (circles) and 
best-fitting shifted exponential functions (lines). Parameters were 
taken from fits to the three participants of Ratcliff and Rouder (1998); 
see Table 2. 

Multiple Choices 

A strength of the LBA model is its ability to account for choices between more than two 

alternatives, but so far we have used only binary choice tasks and illustrations. The predictions of 

the LBA model naturally extend to more than two choices without any increase in the difficulty 
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of the mathematics. Equation 3 simply incorporates all the response choices: one as a pdf (fi) and 

the others as a CDFs (the products of 1-Fi over i≠j). We test the multiple-choice predictions of 

the model using data from Lacouture and Marley (2004), who ran a multiple choice experiment 

with 10 stimuli, and 10 responses. They used lines as stimuli, with the smallest line labeled “#1” 

and the longest labeled “#10”. In their Experiment 2, they had a single participant perform 

around 7,500 absolute identification trials: on each trial, one of the 10 lines was shown to the 

participant, who tried to produce the corresponding response label5. The data showed all of the 

standard absolute identification phenomena in both choice probabilities and response times. For 

example, responses to end stimuli (#1 and #10) were faster and more accurate than responses to 

middle stimuli. 

When modeling data with ten stimuli and ten responses, the LBA model could use 100 

free parameters as drift rates, one for each stimulus-response combination. However, some 

simplifying assumptions cut this number down to just eleven free drift rate parameters: 

1. The values of most parameters were fixed across all 10 stimuli (t0=.27sec, A=705, 

b=1335, and s=.251). 

2. When stimulus i is presented, the drift rate for the correct response is a free 

parameter, vi, i=1..10.  

3. The drift rate for all other (nine) incorrect responses is a fixed fraction of the drift rate 

for the correct response, say vi×g. (We estimated g=.225.) 

These assumptions were made to fit the data in the simplest way possible. They are 

essentially descriptive (as were our parameters for the binary choice data above). A deeper 

approach, but one that is outside the scope of this article, would articulate a theory of absolute 

                                                
5 Half of the absolute identification trials used manual (keyboard) responses, and half used a 
voice key. There was almost no difference in the two data sets, so we combined them. 



LBA: LINEAR BALLISTIC ACCUMULATORS     -29- 

identification that produced drift rate parameters for the 10 stimuli, rather than simply estimating 

them. For such an approach, see Lacouture and Marley (2004) or Brown, Marley, Donkin and 

Heathcote (submitted). Figure 9 shows the response time histograms for correct responses along 

with corresponding predictions from the LBA model. 

 
Figure 9. Correct response time histograms (grey bars) and predicted distributions from the LBA model 
(black lines) for data from Lacouture and Marley’s (2004) Experiment 2. The 10 plots correspond to the 
10 stimuli, from the smallest line length (#1) to the largest (#10). All panels use the same axes (the 
abscissa units are seconds). 

 The LBA model successfully captures the shape of the RT distributions, and even the 

way this shape changes across the stimuli. For example, stimuli on the ends of the range have 

more peaked distributions, and faster RTs on average, than those in the centre. The histograms 

and density functions used in Figure 9 are unconventional in the RT literature, which has 

historically preferred quantiles and cumulative distributions. There is a good reason for this 

preference – it is quite difficult to gauge model misfit in density functions, especially in the tails 

of the distributions. To provide a more stringent test, Figure 10 graphs the same data and model 

fits using RT quantiles (left panel) and response accuracy (right panel). The quantile analysis is 

the same as used for the lexical decision data – for each stimulus (#1..#10) we calculated the RT 

below which 10%, 30%, 50%, 70% and 90% of the data fell. These points are plotted vertically 

above each of the 1..10 stimulus labels on the x-axis, using different symbols (see legends). 
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Figure 10. Response time quantiles (left panel) and response accuracy (right panel) vs. stimulus 
magnitude. Symbols show data from Lacouture and Marley’s (2004) Experiment 2, and solid lines show 
predictions from the LBA model. 

The LBA model accommodates aspects of the data that have proven very challenging for 

other models. For example, the fastest RTs (the leading edge of the RT distribution, shown by 

the 10% quantiles in the left panel) changes by about 0.2sec across the stimulus range. Other 

models have had difficulty with related changes, in binary choice situations (e.g., Ratcliff et al., 

2004). The LBA model simultaneously captures the changes in RT distribution and response 

accuracy, with only one free parameter (drift rate) changing across the stimulus magnitudes. The 

most notable model failures are for stimuli #1 and #10, where the data are less accurate than the 

model predicts, and for stimulus #8, where the data include many very slow responses. 

In our analyses so far, we have demonstrated that the LBA model has complete 

theoretical solutions for choices between any number of response alternatives, which is an 

advantage of the LBA over other models of choice RT. We have separately evaluated the 

performance of the LBA model against binary (N=2) choice data, and against multiple choice 

data (N=10). This leaves unanswered the question of whether the LBA can capture empirical 
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regularities observed when data are collected across many different choice set sizes (N). The 

most notable aspect of such data is Hick’s Law (1952), which, in its simplest form, states that the 

average time taken to choose between N choices is proportional to log2N. Naively, the LBA 

model fails to accommodate this law because, if no parameters are changed, increasing the 

number of accumulators leads to larger error rates and faster RTs. This prediction arises because 

predicted RT is the minimum finishing time from a set of N independent random variables. 

Naturally, the minimum sample from N independent distributions decreases as N increases.  

Parameter adjustments with set size will allow most accumulator models, including the 

LBA, to accurately fit Hick’s Law, as demonstrated by Usher et al. (2002). They found that 

increasing response thresholds in an approximately exponential manner with choice set size 

allowed the model to predict Hick’s Law, and keep error rates approximately constant; a similar 

assumption in the LBA model has similar effects. Other assumptions about changes in parameter 

with set size are also plausible, and any of these may accommodate Hick’s Law. For example, it 

may be imagined that the decision mechanism has a fixed “total power”, hence the sum of the 

drift rates to all accumulators should be fixed. Alternatively, a decision mechanism may have a 

fixed sensitivity, so that the ratio of the maximum drift rate to the sum of the other drift rates 

should be fixed as N grows. The conclusion we draw is that predicting Hick’s Law is a 

complicated task, too large to be tackled here. Instead, we note that the LBA model is certainly 

not in conflict with Hick’s Law, and will accommodate it under appropriate parameter settings. 
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Limitations of the Model 

Neurophysiological Considerations 

 The LBA is a simplification of Usher and McClelland’s (2001) leaky competitive 

accumulator. Usher and McClelland’s model, along with other sequential sampling models, has 

received support from arguments of neural plausibility. The noisy accumulation of evidence in 

these models can be likened to changes in the firing rates or membrane potentials of neurons. 

Indeed, direct recordings from neurons involved in perceptual decisions have been modeled 

using noisy sequential sampling (see, e.g., Gold & Shadlen, 2001; Mazurek, Roitman, Ditterich, 

& Shadlen, 2003; Ratcliff, Cherian, & Seagraves, 2003; Roitman & Shadlen, 2002; Schall, 2001; 

Smith & Ratcliff, 2004). The LBA may be criticized on the basis that it omits the within-trial 

variability that is a basic feature of neural activity, and hence is “neurally implausible”. We 

believe that there are a number of reasons not to weigh such arguments too heavily; we outline 

just two here. 

 Firstly, it is a basic truth that all models (of choice RT and other phenomena) are 

approximations at some level. All models include simplifications for tractability. These 

simplifications are included for convenience, and are not intended as statements about the 

underlying nature of the process at hand. All models of choice RT interpose many layers of 

approximation between neurophysiological reality and theoretical description: ion flows, 

membrane potentials, action potentials; all of these are approximated away, and the LBA model 

adds just one further step. These approximations should not be perceived as inherently harmful 

to scientific progress. In physics, for example, the ideal gas law and Newtonian motion are both 

extremely useful models of reality. Their power and utility persist even though both include 

well-known and demonstrably false simplifications. Indeed, the utility of these laws is increased 
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by these approximations, because the resulting simplicity allows wider application. More 

modestly, we hope that the simplicity and tractability of the LBA model will allow its application 

to a wider range of choice RT paradigms than may otherwise have been possible. 

 Secondly, some of the leading models of choice phenomena from the neurophysiological 

literature omit within-trial variability, just as in the LBA. Most strikingly, Reddi and Carpenter’s 

(2000) LATER model is like the LBA model, except that it has only one response accumulator 

and does not consider between-trial variability in the starting points of evidence accumulation. 

These limitations mean that the LATER model provides an incomplete account of behavioural 

data, particularly of error responses. More recent developments of the LATER model have 

improved its account of error responses somewhat, by adding a second accumulator (see Hanes 

& Carpenter, 1999; Leach & Carpenter, 2001; Reddi, 2001; Reddi, Assress & Carpenter, 2003; 

Carpenter, 2004). It seems to us that if the neurophysiological community accept models that 

omit within-trial variability, the psychological community should be careful about ruling out the 

LBA on grounds of “neural plausibility”. 

Specialised Experimental Paradigms 

There are some experimental paradigms that have been used to investigate those 

processes that we have specifically omitted in the LBA. For example, neurophysiologists often 

employ random dot kinematograms, which include moment-to-moment random fluctuations. 

These stimuli naturally suggest moment-to-moment variability the evidence accumulation 

process, which is one of those processes included in many other decision making models (e.g., 

Ratcliff, 1978; Usher & McClelland, 2001) but not in the LBA. While it is possible that random 

dot stimuli will implicate moment-to-moment variability in decision models, we note that this is 

not a foregone conclusion. It is quite plausible that early visual processing smooths moment-to-
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moment fluctuations and provides a downstream decision process with a constant input, just as 

assumed in the LBA. Indeed, this is exactly how Reddi and Carpenter (2001, see also Reddi, 

2001) model the neural processes underlying decisions using random dot kinematograms. 

The other processes we have omitted from the LBA model that are often included in 

other decision-making models are the nonlinear aspects of passive decay (leakage) and response 

competition (lateral inhibition). Experimental paradigms have been developed to directly 

investigate these processes, by manipulating the timing of information for and against each 

response. For example, Vickers (1995, see also Pietsch & Vickers, 1997, and Brown & 

Heathcote, 2005b) presented a rapid sequence of two stimuli, in which one stimulus occurred 

more often than the other, and found that some participants were most influenced by stimuli 

occurring near the end of the sequence, while others were most influenced by those at the 

beginning of the sequence. These results can be interpreted in terms of passive decay and lateral 

inhibition: if accumulated evidence tends to decay with time, information presented earlier in a 

sequence will be forgotten; conversely, if response competition is strong, early evidence favoring 

one response will not be overcome by later evidence. Usher and McClelland (2001) used an 

experiment of exactly this sort to support the inclusion of leakage and competition components 

in their model. The LBA, on the other hand, assumes linear integration without leakage or 

competition, and so it may not provide a complete account of experiments that manipulate the 

timing of evidence. However, it is possible to provide an account of these experiments within an 

accumulator framework without appealing to leakage and competition, so the paradigm may not 

prove as diagnostic as it seems. The key finding is that some participants are relatively 

uninfluenced by the start of the stimulus sequence, and others are relatively uninfluenced by the 

end of the stimulus sequence. A simple explanation of these effects can be given in terms of 
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attention: some participants fail to attend to the start of the sequence, while others fail to attend 

to the end. There are plausible and well-documented mechanisms by which accumulator models 

can exhibit both kinds of attention failures. Laming (1968) discusses situations in which 

evidence accumulation does not always begin exactly at the stimulus onset, and Ratcliff (1988) 

developed models in which evidence accumulation stops before an overt response is given, 

because an internal response threshold is reached before the stimulus is extinguished. 

Conclusions 

 We have developed the linear ballistic accumulator (LBA) model as a complete model of 

choice RT data, for decisions with any number of alternatives, N=1,2,3, … . The model is the 

only one of its kind to have simple analytic solutions for RT distributions in the N>2 cases. We 

have demonstrated that the model accounts for the distribution of RTs for correct and incorrect 

responses using data from five previously published experiments. The LBA model 

accommodates complex patterns in the relative speed of correct vs. incorrect responses, and the 

shape of the speed-accuracy tradeoff function. 

Currently, decision making theorists are most concerned with the N=2 case (binary 

choices). In this paradigm, there are many theoretical accounts that an end-user could apply – 

Ratcliff and Smith (2004) recommend Ratcliff’s diffusion model as the most complete, but users 

might also consider Brown and Heathcote’s (2005a) ballistic accumulator, or Busemeyer and 

Townsend’s (1992, 1993) decision field theory. If a much simpler, but less complete description 

of the data is required, one might employ Wagenmakers et al.’s (2007) EZ diffusion. For 

multiple choices between N>2 alternatives, only the LBA model has simple-to-use analytic 

solutions, making it the preferred choice. 
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To aid application of the LBA model, we have provided a complete mathematical 

implementation in the free statistical computer language R (http://www.r-project.org/), including 

functions for response time distributions (PDFs and CDFs), response probability, and the speed-

accuracy tradeoff. The code is quite high-level and easy to read (around 100 lines in total), so it 

is simple to translate into other languages. The code works efficiently for any number of 

response alternatives, comes with an example program that illustrates its use, and is available for 

free download from http://science-it.newcastle.edu.au/~sdb231/. 
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Appendix 
In this appendix, without loss of generality, we consider analyses for the first node (i=1) only. 

Identical results hold for i=2,3, …, except with v1 replaced by vi. The derivation of Equation 1 is 

as follows. Suppose p is a random uniform deviate on [b-A,b], and q is a random normal deviate 

with mean v and standard deviation s (note that q is almost certainly not zero). Let F1(t) be the 

cumulative distribution function for the ratio p/q, then: 
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Re-expressing the exponential terms using the normal density equation, and re-arranging: 
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To derive the PDF (Equation 2) from this CDF (Equation 1) we differentiate with respect to t. 
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Again we re-express the exponential terms using the normal density function and get: 
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The CDF for the distribution of activation at any node i at time t and for activation z (Equation 4) 

is derived via integration: 
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The associated PDF (Equation 5) is again obtained by differentiation: 

! 

w
1
z( ) =

d

dz
W
1
z( )

=
d

dz

ts

A 2"
e
#

z

t
#v1

$ 

% 
& 

' 

( 
) 
2

2s
2

# e
#

z#A

t
#v1

$ 

% 
& 

' 

( 
) 
2

2s
2

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

+
A # z + v

1
t

A
*

z # A

t
v
1
,s

$ 

% 
& 

' 

( 
) +

z # v
1
t

A
*

z

t
v
1
,s

$ 

% 
& 

' 

( 
) 

+ 

, 

- 
- 
- 
- 

. 

/ 

0 
0 
0 
0 

=
1

A
#
z # v

1
t( )

t
1
z

t
v
1
,s

$ 

% 
& 

' 

( 
) +

z # A # v
1
t( )

t
1
z # A

t
v
1
,s

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) 

#
1

A
*

z # A

t
v
1
,s

$ 

% 
& 

' 

( 
) +

A # z + v
1
t

tA
1
z # A

t
v
1
,s

$ 

% 
& 

' 

( 
) +

1

A
*

z

t
v
1
,s

$ 

% 
& 

' 

( 
) +

z # v
1
t

tA
1
z

t
v
1
,s

$ 

% 
& 

' 

( 
) 

=
1

A
*

z

t
v
1
,s

$ 

% 
& 

' 

( 
) #*

z # A

t
v
1
,s

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) 

 


